4.7 STANDARD /O INTERFACES

error control bits. then sends an acknowledgment packet (ACK) back to the host. The
hub forwards the token and data packets downstream. All /O devices receive this
sequence of packets, but only the device that recognizes its address in the token packet
accepts the data in the packet that follows. After verifying that transmission has been
error free. it sends an ACK packet to the hub.

Successive data packets on a full-speed or low-speed pipe carry the numbers 0 and
I, alternately. This simplifies recovery from transmission errors. If a token. data. or
acknowledgment packet is lost as a result of a transmission error. the sender resends
the entire sequence. By checking the data packet number in the PID field. the receiver
can detect and discard duplicate packets. High-speed data packets are sequentially
numbered 0. 1. 2. 0. and so on.

Input operations follow a similar procedure. The host sends a token packet of type
IN containing the device address. In effect. this packet is a poll asking the device to
send any input data it may have. The device responds by sending a data packet followed
by an ACK. If it has no data ready. it responds by sending a negative acknowledgment
(NAK) instead.

In earlier discussion. we pointed out that a bus that has a mix of full/low-speed links
and high-speed links uses the split-traftic mode of operation in order not to delay mes-
sages on high-speed links. In such cases. an IN or an OUT packet intended for a tull- or
low-speed device is preceded by a special control packet that starts the split-trattic mode.

This discussion should give the reader an idea about the data transfer protocols
used on the USB. There are many different ways in which such transactions take place
and many protocol rules governing the behavior of the devices involved. A detailed
description of these protocols can be found in the USB specification document [3].

Isochronous Traffic on USB

One of the key objectives of the USB is to support the transfer of isochronous data.
such as sampled voice. in a simple manner. Devices that generate or receive isochronous
data require a time reference to control the sampling process. To provide this reference.
transmission over the USB is divided into frames of equal length. A frame is 1 ms long
for low- and full-speed data. The root hub generates a Start Of Frame control packet
(SOF) precisely once every | ms to mark the beginning of a new frame.

The arrival of an SOF packet at any device constitutes a regular clock signal that
the device can use for its own purposes. To assist devices that may need longer periods
of time. the SOF packet carries an 1 1-bit frame number. as shown in Figure 4.47a. Fol-
lowing each SOF packet. the host carries out input and output transfers for isochronous
devices. This means that each device will have an opportunity for an input or output
transfer once every 1 ms.

The main requirement for isochronous traffic is consistent timing. An occasional
error can be tolerated. Hence. there is no need to retransmit packets that are lost or to
send acknowledgments. Figure 4.475 shows the first two transmissions following SOF.
A control packet carrying device address 3 is followed by data for that device. This
may be input or output data. depending on whether the control packet is an IN or OUT
control packet. There is no acknowledgment packet. The next transmission sequence
is for device 7.

281



282

CHAPTER 4 +« INPUT/OUTPUT ORGANIZATION

Bits 8 11 5

PID Frame number CRCS

(a) SOF Packet

‘L I-ms frame ‘%

S — Start-ot-frame packet

Tn— Token packet. address = n
D — Data packet
A — ACK packet

(b) Frame example

Figure 4.47 USB frames.

As an example, the data packet for device 3 may contain 8 bytes of data. One
such packet is sent in each frame, providing a 64-kilobits/s isochronous channel. Such
a channel may be used for a voice connection. The transmission of 8 bytes of data
requires a 3-byte token packet followed by an I I-byte data packet (including the PID
and CRC fields), for a total of 132 bits. A minimum of three more bytes are needed
for clock synchronization and to mark the end of a packet sequence. At a speed of
12 megabits/s, this takes about 13 us. Clearly. there is room in a frame to support
several such devices. After serving all isochronous devices on the bus, whatever time is
leftin a frame is used to service asynchronous devices and exchange control and status
information.

Isochronous data are allowed only on full-speed and high-speed links. For high-
speed links. the SOF packet is repeated eight times at equal intervals within the 1-ms
frame to create eight microframes of 125 1¢s each.

Electrical Characteristics

The cables used for USB connections consist of four wires. Two are used to carry
power, +5 V and Ground. Thus. a hub or an I/O device may be powered directly from
the bus. or it may have its own external power connection. The other two wires are used
to carry data. Different signaling schemes are used for different speeds of transmission.
At low speed, Is and Os are transmitted by sending a high voltage state (5 V) on one or
the other of the two signal wires. For high-speed links. differential transmission is used.



4.1

4.2

4.3

4.4
4.5

4.6

PROBLEMS 283

4.8 CONCLUDING REMARKS

In this chapter. we discussed three basic approaches to I/O transfers. The simplest tech-
nique is programmed I/O. in which the processor performs all the necessary control
functions under direct control of program instructions. The second approach is based on
the use of interrupts: this mechanism makes it possible to interrupt normal execution of
programs in order to service higher-priority requests that require more urgent attention.
Although all computers have a mechanism for dealing with such situations. the complex-
ity and sophistication of interrupt-handling schemes vary from one computer to another.
The third I/O scheme involves direct memory access: the DMA controller transfers data
between an 1/O device and the main memory without continuous processor intervention.
Access to memory is shared between the DMA controller and the processor.

Three popular interconnection standards are described. the PCL. SCSI, and USB.
They represent different approaches that meet the needs of various devices and reflect
the increasing importance of plug-and-play features that increase user convenience.

PROBLEMS

The input status bit in an interface circuit is cleared as soon as the input data buffer is
read. Why is this important?

Write a program that displays the contents of 10 bytes of the main memory in hexadec-
imal format on a video display. Use either the assembler instructions of a processor
of your choice or pseudo-instructions. Start at location LOC in the memory, and use
two hex characters per byte. The contents of successive bytes should be separated by a
space.

The address bus of a computer has 16 address lines, Ajs_o. If the address assigned to
one device is 7CA4,, and the address decoder for that device ignores lines Ay and Ao.
what are all the addresses to which this device will respond?

What is the difference between a subroutine and an interrupt-service routine?

The discussion in this chapter assumed that interrupts are not acknowledged until the
current machine instruction completes execution. Consider the possibility of suspend-
ing operation of the processor in the middle of executing an instruction in order to
acknowledge an interrupt. Discuss the difficulties that may arise.

Three devices. A. B, and C. are connected to the bus of a computer. I/O transfers for all
three devices use interrupt control. Interrupt nesting for devices A and B is not allowed,
but interrupt requests from C may be accepted while either A or B is being serviced.
Suggest different ways in which this can be accomplished in each of the following cases:
(a) The computer has one interrupt-request line.

(h) Two interrupt-request lines, INTR1 and INTR2, are available, with INTRI having
higher priority.

Specify when and how interrupts are enabled and disabled in each case.



284

4.7

4.8

4.9

4.10

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

Consider a computer in which several devices are connected to a common interrupt-
request line, as in Figure 4.8a. Explain how you would arrange for interrupts from
device j to be accepted before the execution of the interrupt-service routine for device i
is completed. Comment in particular on the times at which interrupts must be enabled
and disabled at various points in the system.

Consider the daisy chain arrangement in Figure 4.8a. Assume that after a device gen-
erates an interrupt request, it turns off that request as soon as it receives the interrupt-
acknowledge signal. Is it still necessary to disable interrupts in the processor before
entering the interrupt-service routine? Why?-

Successive data blocks of N bytes each are to be read from a character-oriented input
device, and program PROG is to perform some computation on each block of data.
Write a control program, CONTROL, for the 68000, ARM, or Pentium processors that
will perform the following functions.

(a) Read data block 1.

(b) Activate PROG and point it to the location of block 1 in the main memory.

(c) Read block 2 using interrupts while PROG is performing computations on block |-
(d) Start PROG on block 2, and meanwhile start reading block 3, and so on.

Note that CNTRL must maintain correct buffer pointers, keep track of the character
count, and correctly transfer control to PROG, whether PROG takes more or less time
than block input.

A computer is required to accept characters from 20 video terminals. The main memory
area to be used for storing data for each terminal is pointed to by a pointer PNTR#,
where n = 1 through 20. Input data must be collected from the terminals while another
program PROG is being executed. This may be accomplished in one of two ways:

(a) Every T seconds, program PROG calls a polling subroutine POLL. This subroutine
checks the status of each of the 20 terminals in sequence and transfers any input
characters to the memory. Then it returns to PROG.

(b) Whenever a character is ready in any of the interface buffers of the terminals, an
interrupt request is generated. This causes the interrupt routine INTERRUPT to
be executed. After polling the status registers, INTERRUPT transfers the input
character and then returns to PROG.

Write the routines POLL and INTERRUPT using either pseudocode or the assembler
language of the processor of your choice. Let the maximum character rate for any
terminal be ¢ characters per second, with an average rate equal to rc, where r < 1. In
method (a), what is the maximum value of 7' for which it is still possible to guarantee
that no input characters will be lost? What is the equivalent value for method (b)?
Estimate, on the average, the percentage of time spent in servicing the terminals for
methods (a) and (), for ¢ = 100 characters per second and r = 0.01, 0.1, 0.5, and 1.
Assume that POLL takes 800 ns to poll all 20 devices and that an interrupt from a
device requires 200 ns to process.



4.11

4.12

4.13

4.14

4.15

PROBLEMS 285

Consider an /O device that uses the vectored-interrupt capability of the 68000
processor.

(a) Describe the sequence of steps that take place when the processor receives an
interrupt request, and give the number of bus transfers required during each of
these steps. Do not give details of bus signals or the microprogram.

(b) When an interrupt request is received, the processor completes execution of the
current instruction before accepting the interrupt. Examine the instruction table in
Appendix C, and estimate the maximum possible number of memory transfers that
can take place during that period.

(¢) Estimate the number of bus transfers that can occur from the instant a device requests
an interrupt until the first instruction of the interrupt-service routine is fetched for
execution.

A logic circuit is needed to implement the priority network shown in Figure 4.8b. The
network handles three interrupt request lines. When a request is received on line INTRi,
the network generates an acknowledgment on line INTA;. If more than one request is
received, only the highest-priority request is acknowledged, where the ordering of
priorities is

priority of INTR1 > priority of INTR2 > priority of INTR3
(a) Give a truth table for each of the outputs INTA1, INTAZ, and INTA3.

(b) Give a logic circuit for implementing this priority network.
(¢) Can your design be easily extended for more interrupt-request lines?

(d) By adding inputs DECIDE and RESET, modify your design such that INTA/ is set
to 1 when a pulse is received on the input DECIDE and is reset to 0 when a pulse
is received on the input RESET.

Interrupts and bus arbitration require means for selecting one of several requests based
on their priority. Design a circuit that implements a rotating-priority scheme for four
input lines, REQ1 through REQ4. Initially, REQ! has the highest and REQ4 the lowest
priority. After some line receives service, it becomes the lowest priority line, and the
next line receives highest priority. For example, after REQ2 has been serviced, the
priority order, starting with the highest, becomes REQ3, REQ4, REQ1, REQ2. Your
circuit should generate four output grant signals, GR1 through GR4, one for each input
request line. One of these outputs should be asserted when a pulse is received on a line
called DECIDE.

The 68000 processor has a set of three lines called IPL2-0 that are used to signal
interrupt requests. The 3-bit binary number on these lines is interpreted by the processor
as representing the highest-priority device requesting an interrupt. Design a priority
encoder circuit that accepts interrupt requests from as many as seven devices and
generates a 3-bit code representing the request with the highest priority.

(This problem is suitable for use as a laboratory experiment.) Given a video terminal
connected to the computer in your laboratory, complete the following two assignments.



286

4.16

417

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

(a) Write an I/O routine A that prints letters in alphabetical order. It prints two lines as
follows, and then stops:

ABC...YZ
ABC...YZ

(b) Write an I/O routine B that prints the numeric characters 0 through 9 in increasing
order three times. Its output should have the following format:

012...9012...9012...9

Use program A as the main program and program B as an interrupt-service routine
whose execution is initiated by entering any character on the keyboard. Execution of
program B can also be interrupted by entering another character on the keyboard. When
program B is completed, execution of the most recently interrupted program should be
resumed at the point of interruption. Program B should start a new line as appropriate
so that the printed output may appear as follows:

ABC

012...901
012...9012...9012...9
2...9012...9

DE... YZ

To start a new line, the program needs to send two characters: CR (0Dy¢) and LF (0A |¢).
Show how you can use the processor priority to either enable or inhibit interrupt nesting.

(This problem is suitable for use as a laboratory experiment.) In Problem 4.15, when
the printing of a sequence is interrupted and later resumed, the sequence continues at
the beginning of a new line. It is desired to add cursor movement control functions
such that when printing of a sequence is resumed, the characters are printed on a new
line, at the same character position where they would have been had the interruption
not occurred. Thus, the printed output would appear as follows:

ABC
012 ...901
012...9012...9012...9
2...9012...9
DE...YZ

Rearrange the software you prepared in Problem 4.15 so that a third controller routine,
C, is entered when interruption occurs. This routine calls program B to print the number
sequence. Then, before returning to the interrupted program, the routine issues cursor
movement commands as appropriate.

Consider the breakpoint scheme described in Section 4.2.5. A software-interrupt in-
struction replaces a program instruction where the breakpoint is inserted. Before it
returns to the original program, the debugging software puts the original program



4.18

4.19

4.20

4.21

4.22

4.23

PROBLEMS 287

instruction back in its place. thus removing the breakpoint. Explain how the debugger
can put the original program instruction in its place. execute it. then install the breakpoint
again before any other program instruction is executed.

The software interrupt instruction. SWI. of the ARM can be used by a program to call
the operating system to request some service. The service being requested is specified
in the low-order 8 bits of the instruction. Each of the services provided by the operating
system is performed by a separate subroutine, and the starting addresses of these routines
are stored in a table.

(a) Give one or more instructions that the operating system can use to copy the low-
order 8 bits of the SWI instruction into a register.

(b) Give one or more instructions to call the appropriate service routine.

The interrupt-request line. which uses the open-collector scheme. carries a signal that
is the logical OR of the requests from all the devices connected to it. In a different
application, it is required to generate a signal that indicates that all devices connected
to the bus are ready. Explain how you can use the open-collector scheme for this purpose.

In some computers, the processor responds only to the leading edge of the interrupt-
request signal on one of its interrupt-request lines. What happens if two independent
devices are connected to this line?

In the arrangement in Figure 4.20, a device becomes the bus master only when it receives
a low-to-high transition on its bus grant input. Assume that device I requests the bus
and receives a grant. While it is still using the bus. device 3 asserts its BR output. Draw
a timing diagram showing how device 3 becomes the bus master after device | releases
the bus.

Assume that in the bus arbitration arrangement in Figure 4.20, the processor keeps
asserting BG1 as long as BR is asserted. When device i is requesting the bus, it becomes
the bus master only when it receives a low-to-high transition on its BG/ input.

(a) Assume that devices are allowed to assert the BR signal atany time. Give a sequence
of events to show that the system can enter a deadlock situation. in which one or
more devices are requesting the bus. the bus is free. and no device can become the
bus master.

(h) Suggest a rule for the devices to observe in order to prevent this deadlock situation
from occurring. ,

Consider the daisy-chain arrangement shown in Figure P4.1. in which the bus-request

signal is fed back directly as the bus grant. Assume that device 3 requests the bus and

BGI BG2 BGn

- — —_— e s ¢ ——p

BR1 BR2 BRn
y J

Figure P4.1 A decentralized bus assignment scheme.




288

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

begins using it. When device 3 is finished, it deactivates BR3. Assume that the delay
from BGi to BG(i + 1) in any device is d. Show that a spurious bus grant pulse will
travel downstream from device 3 (spurious because it is not a response to any request).
Estimate the width of this pulse.

Shortly after device 3 in Problem 4.23 releases the bus, devices 1 and 5 request the bus
simultaneously. Show that they can both receive a bus grant.

Consider the bus arbitration scheme shown in Figure 4.20. Assume that a local signal
called BUSREQ in the device interface circuit is equal to 1 whenever the device needs
to use the bus. Design the part of the interface circuit that has BUSREQ, BGi, and
BBSY as inputs and that generates BR, BG(i + 1), and BBSY as outputs.

Consider the arbitration circuit shown in Figure 4.22. Assume that the priority code for a
device is stored in a register in the interface circuit. Design a circuit to implement this ar-
bitration scheme. Arbitration begins when Start-Arbitration is asserted. A little later, the
arbitration circuit should activate an output called Winner if it wins the arbitration cycle.

How would the timing diagram in Figure 4.26 be affected if the distance between the
processor and the I/0 device is increased? How can this increased distance be accom-
modated in the case of Figure 4.24?

An industrial plant uses several limit sensors for monitoring temperature, pressure, and
other factors. The output of each sensor consists of an ON/OFF switch, and eight such
sensors need to be connected to the bus of a small computer. Design an appropriate
interface so that the state of all eight switches can be read simultaneously as a single
byte at address FE10;¢. Assume the bus is synchronous and that it uses the timing
sequence of Figure 4.24.

Design an appropriate interface for connecting a seven-segment display as an output
device on a synchronous bus. (See Figure A.37 in Appendix A for a description of a
seven-segment display.)

Add an interrupt capability to the interface in Figure 4.29. Show how you can introduce
an interrupt-enable bit, which can be set or cleared by the processor as bit 6 of the status
register of the interface. The interface should assert an interrupt request line, INTR,
when interrupts are enabled and input data are available to be read by the processor.

The bus of a processor uses the multiple-cycle scheme described in Section 4.5.1. The
speed of a memory unit is such that a read operation follows the timing diagram shown
in Figure 4.25. Design an interface circuit to connect this memory unit to the bus.

Consider a write operation on a bus that uses the multiple-cycle scheme described in
Section 4.5.1. Assume that the processor can send both address and data in the first
clock cycle of a bus transaction. But the memory requires two clock cycles after that
to store the data.

(@) Can the bus be used for other transactions during that period?

(b) Can we do away with the memory’s response in this case? (Hint: Examine carefully
the case in which the processor attempts another write operation to the same memory
module while that module is still busy completing a previous request. Explain how
this situation can be handled.)



4.33

4.34

4.35

4.36

REFERENCES 289

Figures 4.24 to 4.26 provide three different approaches to bus design. What happens
in each case if the addressed device does not respond due to a malfunction? What
problems would this cause and what remedies are possible?

In the timing diagram in Figure 4.25. the processor maintains the address on the bus
until it receives a response from the device. Is this necessary? What additions are needed
on the device side if the processor sends an address for one cycle only?

Consider a synchronous bus that operates according to the timing diagram in Fig-
ure 4.24. The address transmitted by the processor appears on the bus after 4 ns. The
propagation delay on the bus wires between the processor and different devices con-
nected varies from | to 5 ns. address decoding takes 6 ns. and the addressed device
takes between 5 and 10 ns to place the requested data on the bus. The input buffer needs
3 ns of setup time. What is the maximum clock speed at which this bus can operate?
The time required for a complete bus transfer in the case of Figure 4.26 varies depending
on the delays involved. Consider a bus having the same parameters as in Problem 4.35.
What is the minimum and maximum bus cycle time?

REFERENCES

I. PCI Local Bus Specifications, available at www.pcisig.com/developers.
2. SCSI-3 Architecture Model (SAM), ANSI Standard X3.270. 1996. This and other
SCSI documents are available on the web at www.ansi.org.

3. Universal Serial Bus Specification, available at www.usb.org/developers.






